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Abstract. A transport equation for the particle phase space density (probability density function
(pdf) kinetic equation) is derived for the motion of a dilute suspension of particles in a turbulent flow.
The underlying particle equation of motion is based upon a Langevin equation but with a non-white
noise driving force derived from an Eulerian aerodynamic force field whose statistics are assumed
known. Specifically both the particle position and velocity are considered to be functionals of the
driving force and an application of a more general form of the Furutsu–Novikov theorem leads to
closed expressions for the phase space diffusion current (i.e. the net force due to the turbulence
acting on the particles per unit volume of phase space). In the case of a Gaussian random driving
force the closed expressions reduce to a simple Boussinesq form in gradients of the pdf with respect
to particle velocity and position. As a practical application solutions of the equation are compared
with results obtained from particle tracking in a developing simple shear generated by large eddy
simulation.

1. Introduction

Probability density function (pdf) equations have proved to be of value in understanding the
behaviour of stochastic systems. Obvious examples of their usage occur in the study of
Brownian motion [1] and in the kinetic theory of gases [2]. In more recent times they have
been used extensively by Pope and others to model both turbulence [3] and turbulent related
phenomena such as combustion [4] and atmospheric dispersion [5]. In all these cases the
independent variables are the phase space variables of the system and the pdf equation describes
the transport of the average phase space density in terms of those variables in phase space: the
solution of the equation is the pdf that the system will be in any particular state as it evolves
randomly in time from a given initial distribution. One of us in a series of papers [6–8] has
used this approach to obtain the so-called continuum equations for a two-fluid model of dilute
particle laden flows. In this particular case the pdf referred to is a function of both the particle
velocity and position at any given time. As in kinetic theory, the continuum equations for
the particle (dispersed) phase were obtained by integrating the pdf equation, multiplied by
a suitable power of the velocity, over all particle velocities at a particular location in space.
Henceforth, we will refer to the pdf equation describing the transport of particles in phase
space as a pdf kinetic equation to emphasize the close link with kinetic theory.

This so-called pdf kinetic equation was derived by averaging the Liouville equation for the
instantaneous particle phase space density over all realizations of the turbulent aerodynamic
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force field that acts upon the particle at a particular instant and location in phase space.
Assuming that this force is separable into a steady resistive force (dependent upon the particle
velocity) and a fluctuating driving force (independent of particle velocity), a crucial feature of
the derivation is the closure approximation for the phase space ‘diffusion’ currentj representing
the contribution to the pdf equation from the aerodynamic driving force. This was based on an
application of Kraichnan’s Lagrangian history direct interaction (LHDI) approximation [9, 10]
which gives [7]:

j = −
(
∂

∂v
· µ +

∂

∂x
· λ + γ

)
P(x, v, t) (1)

whereP(x, v, t) is the probability density for a particle with positionx and velocityv at
time t andµ, λ andγ are dispersion tensors dependent upon the distribution in displacements
in velocity and position about(x, v) in times of order of the timescale of the fluctuating
aerodynamic driving force along a particle trajectory containing(x, v) at time t . In more
precise terms,j/P (x, v, t) is the net aerodynamic driving force (due to the turbulence) per
unit mass conditional upon a particle released into the flow field at some timet ′ < t and being
atx, v at timet .

Further,γ is a body force dependent upon inhomogeneities in the turbulence of the carrier
flow andµ andλ are such that in the limit of particles with long response times compared with
the fluid’sj →−(∂/∂v)·µP (see [6] for details); that is the pdf equation takes on the same form
as the classical Fokker–Planck equation of Brownian motion. In other words a Markov process
(in which the fluctuating aerodynamic driving force is equivalent to white noise) is a special
case of the random motion considered here. Indeed not only is the closure approximation
in (1) appropriate for all particle response times, it is an exact closure when the fluctuating
aerodynamic driving force is a Gaussian random process. This is a particularly important result
since it ensures realizability ofP under a certain set of non-trivial circumstances. The particular
form of j (involving gradients inbothvelocity and position) was shown to be consistent with
random Galilean transformation invariance (RGT) [6, 11]. Indeed using this principle Reeks
[8] was able to construct the form forj appropriate for homogeneous flows. However, to
tackle the problem of non-uniform flows the more general-purpose procedure of LHDI was
used since it was known to satisfy RGT invariance [10].

Although LHDI is a powerful technique, it involves an elaborate procedure not easy to
apply to even the simplest of systems. As an illustration, for this particular system it is first
necessary to transform to a new phase for which the phase space density is constant along
a particle trajectory. Particle trajectories in phase space are then used to define generalized
vectors and response functions. Thusf(x, v, t |s) refers to the value off measured at times
(the measuring time) along a particle trajectory containingx, v at timet (the labelling time)
and the response function̂G(x, v, t |s;x′, v′, t ′|s ′) is the instantaneous phase space density,
in a particular realization of the flow, measured at times at some location along a particle
trajectory containing(x, v) at time t arising from an instantaneous point source at times ′

located by the second trajectory(x′, v′, t ′|s ′). The response function of interest is a particular
case of this generalized response function whent = s and t ′ = s ′. An expression for the
associated phase space diffusion current in (1) is recovered only after a closed expression for
the equivalent term in the averaged Liouville equation for(Ĝ) is obtained and transformed
back to the original phase space. The reason for this circuitous route is that in the so-called
primitive expansion forĜ(x, v, t |s;x′, v′, t ′|s ′) intermediate labelling times can be replaced
by t without changing the expansion. This together with the fact that〈Ĝ〉 is independent of
the measuring time leads to a simplification of the closure approximation in this transformed
phase space, in which memory and particle relaxation effects are contained in integrals over
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particle trajectories in phase space independent of〈Ĝ〉 and the closure approximation depends
upon local gradients of〈Ĝ〉.

Most of this procedure, fortunately, can be avoided using a more direct approach which, in
addition, permits the consideration of non-Gaussian driving forces and offers the potential of
dealing with more complex flows involving, for example, thermal and mass coupling between
the phases.

This method is a functional approach similar to that adopted in fluid turbulence [12].
In this approach, the particle position and velocity are considered functionals of the random
aerodynamic driving force. By averaging the phase space density function over all realizable
states of the fluctuating aerodynamic driving force (with their associated probabilities), one
again arrives at the averaged form of Liouville’s equation for the pdf but containing one
unknown, the phase space diffusion current. An expression for this can be found in terms of
the pdf by employing results from functional calculus. This expression involves the statistics of
the random aerodynamic driving force (which are assumed known) and a new unknown which
can be considered as the transition probability. Rather than explicitly specifying this transition
probability, but instead using an approximation based on the particle equations of motion, the
resultant expression is found to be identical to that derived from the LHDI procedure. However,
this method is less complicated and, arguably, more mathematically rigorous than the LHDI
approach.

The analysis presented here makes direct use of the Furutsu–Novikov–Donsker theorem
[13–15]. However, the same results can be obtained using an analysis explicitly involving the
characteristic functional of the random flow field in time and its functional derivatives as is
the approach used in [6] for the dispersion of particles in a homogeneous turbulent flow field.
We note that this latter approach has similarities to that used in the propagation of waves in
random media [16] and to that presented in [17].

The format of this paper is as follows. In section 2, the phase space density function is
defined and Liouville’s equation for the pdf is derived from the Langevin equation of motion.
As mentioned above, this contains an unknown term: the phase space diffusion current. In
order to derive a closed form for this term, the statistics of the random aerodynamic driving
force must be specified. In section 3, the statistics are assumed to be Gaussian in nature and
an expression for the phase space diffusion current for inhomogeneous flows is obtained. This
method is then extended to consider the situation of initial correlation effects in section 4. As
a practical application of the above theory, in section 5 results obtained from the pdf kinetic
equation are compared with those previously obtained for dispersion in a developing simple
shear using large eddy simulation (LES).

2. The Liouville equation

This study is only concerned with the mechanical effect of the carrier flow on the particulate
phase: there is no thermal coupling or mass exchange. For convenience, it is supposed
that the dispersed phase is mono-disperse and that it is also dilute so that particle–particle
collisions can be ignored. It is further assumed that the suspended particles are sufficiently
large so that Brownian motion may be ignored: thus the particle motion is driven exclusively
by aerodynamic forces which are assumed to depend upon the relative velocity between the
particle and local carrier flow.

The Langevin equation we consider is

dxpi
dt
= vpi (2)
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dvpi
dt
= −βij vpj + Fi + fi (3)

wherexp(t) andvp(t) are the position and velocity of the particle respectively,β(xp(t), t) is
a ‘dissipative’ tensor, the components of whose inverse,β−1

ij , are the particle response times to
changes in the velocity in thei direction due to changes in the flow velocity in thej direction.
Further,F (xp(t), t) represents the external forces, or the mean aerodynamic driving force, or
both, which act on the particle, withf(xp(t), t) being the fluctuating part of the aerodynamic
driving force. At the moment nothing will be assumed about the statistics off except that it
has zero mean.

In general, the mean aerodynamic driving force is a function of the relative velocity
between the particle and the carrier flow, in which caseβ is a function of the particle mean
velocity, and hence particle position, and is an average over the local carrier flow velocity.
However, at low particle Reynolds numbers,β is a tensor whose components are constants
of the motion. An example of this situation is Stokes drag acting in a dilute suspension of
particles: in this caseF andf can be written respectively as

F = β · ū + F e f = β · u′
whereū(x, t) andu′(x, t) are the mean and fluctuating components of the carrier flow and
F e(x, t) represents any external forces present such as gravity. The exact forms ofβ and the
mean aerodynamic driving force are to be found in Reeks [7] and though the exact form of
these need not concern us here, it should be noted that neither depend explicitly onf .

Following Pope [4] the ‘fine grained’ phase space density function,W(x, v, t), that the
position field,xp(t), and the velocity field,vp(t), of the particle take the particular set of
valuesx andv at timet respectively, in any one realization of the flow (i.e. for a givenf ), is
defined by

W(x, v, t) = δ(xp(t)− x)δ(vp(t)− v). (4)

The pdf itself is then defined by

P(x, v, t) = 〈W(x, v, t)〉 = 〈δ(xp(t)− x)δ(vp(t)− v)〉
where averaging is over all realizable states of the random aerodynamic driving force with
their appropriate probabilities (see, for example, [18]); a more rigorous treatment of averaging
in terms of functionals is given by McComb [19]. Differentiating both sides of (4) with respect
to t and using the chain rule gives

∂W

∂t
= ∂x

p

i

∂t

∂

∂x
p

i

[δ(xp(t)− x)δ(vp(t)− v)] +
∂v

p

i

∂t

∂

∂v
p

i

[δ(xp(t)− x)δ(vp(t)− v)]

= − ∂x
p

i

∂t

∂

∂xi
[δ(xp(t)− x)δ(vp(t)− v)]

−∂v
p

i

∂t

∂

∂vi
[δ(xp(t)− x)δ(vp(t)− v)]

= − ∂

∂xi

[
∂x

p

i

∂t
δ(xp(t)− x)δ(vp(t)− v)

]
− ∂

∂vi

[
∂v

p

i

∂t
δ(xp(t)− x)δ(vp(t)− v)

]
(5)

where in deriving the second line use has been made of the identity

∂

∂x
f (x − y) = − ∂

∂y
f (x − y). (6)
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Also, (5) follows from the previous line by noting that∂xpi /∂t is not a function ofx and∂vpi /∂t
is not a function ofv as can be seen from (2) and (3). Substituting (2) and (3) into (5) gives

∂W

∂t
= − ∂

∂xi
[vpi δ(x

p(t)− x)δ(vp(t)− v)] − ∂

∂vi
[{−βij (xp(t), t)vpj

+Fi(x
p(t), t) + fi(x

p(t), t)}δ(xp(t)− x)δ(vp(t)− v)].
This equation is now averaged over all realizations, to yield

∂P

∂t
= − ∂

∂xi
〈vpi δ(xp(t)− x)δ(vp(t)− v)〉 −

∂

∂vi
〈{−βij (xp(t), t)vpj + Fi(x

p(t), t)

+fi(x
p(t), t)}δ(xp(t)− x)δ(vp(t)− v)〉

= − ∂

∂xi
(viP ) +

∂

∂vi
(βij (x, t)vjP )

− ∂

∂vi
(Fi(x, t)P )− ∂

∂vi
〈fi(x, t)W(x, v, t)〉. (7)

This is a partial differential equation forP(x, v, t) and is a form of Liouville’s equation.
However, it contains one unknown term,〈fi(x, t)W(x, v, t)〉, the phase space diffusion
current. Thus, to ‘close’ the equation forP , an expression for this unknown term has to
be found.

3. Closure for Gaussian random force fields

If the fluctuating aerodynamic driving force,f is Gaussian then a result from functional
calculus can be used. This result is called theFurutsu–Novikov–Donskerformula and seems
to have been derived independently by Furutsu [13], Novikov [14] and Donsker [15]. It is
given below in the form presented in the last paper. In what follows, use is made of functionals
and functional derivatives and a brief explanation of these are given in appendix A.

Furutsu–Novikov–Donsker formula. Letfi(s) be arbitrary Gaussian random functions
with zero mean and with a correlation tensor

〈fi(s)fk(s ′)〉 = Fik(s, s ′) (8)

where s is the aggregate of arguments on which the random function depends. Then ifR[f ] is
any functional off ,

〈fi(s)R[f ]〉 =
∫
Fik(s, s

′)
〈
δR[f ]

δfk(s ′) ds ′

〉
ds ′

where the integral extends over the region in which the functions are defined.
This result is well known and so a derivation will not be presented (see, for example,

[13, 15, 20]). In particular, (8) gives the result, that forf(x, t), a random Gaussian field of
zero mean,

〈fi(x, t)R[f ]) =
∫ ∫
〈fi(x, t)fj (x′, t ′)〉

〈
δR[f(x, t)]

δfj (x′, t ′) dx′ dt ′

〉
dx′ dt ′. (9)

From (7), it can be seen that the functionalR we wish to consider is

R[f ] = W(x, v, t) = δ(xp(t)− x)δ(vp(t)− v) (10)

with bothxp andvp being themselves functionals off as can be seen from the equation of
motion. Thus in order to close the equation forP , the functional derivative ofW with respect
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to f has to be found. This is
δW

δfj (x′, t ′) dx′ dt ′
= δ

δfj (x′, t ′) dx′ dt ′
[δ(xp − x)δ(vp − v)]

= δx
p

k (t)

δfj (x′, t ′) dx′ dt ′
∂

∂x
p

k

[δ(xp − x)δ(vp − v)]

+
δv

p

k (t)

δfj (x′, t ′) dx′ dt ′
∂

∂v
p

k

[δ(xp − x)δ(vp − v)]

= −
[
∂

∂xk

δx
p

k (t)

δfj (x′, t ′) dx′ dt ′
+
∂

∂vk

δv
p

k (t)

δfj (x′, t ′) dx ′ dt ′

]
W(x, v, t) (11)

where in deriving the last line use has been made of (6) and also that the functional derivatives
of xp andvp with respect tof(x′, t ′) are independent ofx andv, respectively. In order
to proceed, these functional derivatives now have to be evaluated. This is carried out in
appendix B, with the resultant expressions given by

δx
p

i (t)

δfj (x′, t ′) dx′ dt ′
= Gji(x

′, t ′;xp(t), t)δ(xp(t ′)− x′)

δv
p

i (t)

δfj (x′, t ′) dx′ dt ′
= d

dt
Gji(x

′, t ′;xp(t), t)δ(xp(t ′)− x′)
where the generalized response functions,G, are defined by

Gji(x
p(t ′), t ′;xp(t), t) = δx

p

i (t)

δfj (xp(t ′), t ′) dt ′
(12)

and which satisfy

d2

dt2
Gji + βin

d

dt
Gjn +Gjk

∂βin

∂x
p

k

dxpn
dt
−Gjk

∂Fi

∂x
p

k

= δjiδ(t − t ′). (13)

The closed expression for the phase space diffusion current is found to be (see appendix B for
details)

〈fi(x, t)W(x, v, t)〉 = −
[
∂

∂xj
λji +

∂

∂vj
µji + γi

]
P(x, v, t) (14)

where

λji =
∫ t

0
dt ′〈fi(x, t)fk(x, v, t |t ′)〉Gkj (t

′|t) (15)

µji =
∫ t

0
dt ′〈fi(x, t)fk(x, v, t |t ′)〉 d

dt
Gkj (t

′|t) (16)

γi = −
∫ t

0
dt ′
〈
∂fi(x, t)

∂xj
fk(x, v, t |t ′)

〉
Gkj (t

′|t). (17)

In (15)–(17),f(x, v, t |t ′) represents the value off measured at timet ′ along a particle
trajectory that passes throughx, v at time t . Also, G(t ′|t) is shorthand forG(x′, t ′;x, t)
which satisfies (13) but withxp replaced byx. The final form of the pdf kinetic equation for
inhomogeneous flow is thus

∂P

∂t
+ vi

∂P

∂xi
− ∂

∂vi
(βij vjP ) +

∂

∂vi
(FiP ) = ∂

∂vi

[
∂

∂vj
(µjiP ) +

∂

∂xj
(λjiP ) + γiP

]
.

This is the same as found by Reeks [7] using the LHDI approximation. Further, iff is a
white noise process, the above reduces to the classical Fokker–Planck equation of Brownian
motion (see the discussion at the end of appendix B.1).
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4. Initial conditions

Throughout the preceding sections it has been tacitly assumed that there is no initial correlation
between the phase space densityW and the random aerodynamic driving force,f , i.e.

〈fi(x0, 0)W(x0, v0, 0)〉 = 0

wherex0 andv0 are the particle’s initial position and velocity att = 0. In this section we
show how to take into account any initial correlation.

The starting point is (2) and (3), or

d2x
p

i

dt2
+ βij (x

p, t)
dxpj
dt
− Fi(xp, t) = fi(xp, t) (18)

but with the initial conditions

x
p

i (0) = bi [f(xp(0), 0)] ẋ
p

i (0) = ai [f(xp(0), 0)]
whereb and a are arbitrary functionals of the initial random aerodynamic driving force
f(xp(0), 0). To solve the above, we use the notion of ‘extending’ a differential operator
(see [21] for an excellent discussion). That is, if we define the operatorL to be the right-hand
side of (18), then the extended definition ofL is

L[xp] = fi(xp, t) + aiδ(t) + biδ
′(t)

whereδ(t) is the Dirac delta function andδ′(t) is its derivative. Thus the generalized response
functions,Gji(x

p(t ′), t ′;xp(t), t) as defined by (12), satisfy,

M[Gji(x
p(t ′), t ′;xp(t), t)] = δij δ(t − t ′) +Ajiδ(t) +Bjiδ

′(t) (19)

where

M[Gji ] = d2

dt2
Gji + βik

d

dt
Gjk +

dxpk
dt

∂βik

∂x
p
m

Gjm − ∂Fi

∂x
p

k

Gjk

and

Aji = δai [f(xp(0), 0)]

δfj (xp(t ′), t ′) dt ′
Bji = δbi [f(xp(0), 0)]

δfj (xp(t ′), t ′) dt ′
. (20)

To proceed,Gji is split into two componentsGji = G1
ji +G2

ji such that

M[G1
f i(x

p(t ′), t ′;xp(t), t)] = δij δ(t − t ′) (21)

M[G2
ji(x

p(t ′), t ′;xp(t), t)] = Ajiδ(t) +Bjiδ
′(t). (22)

From (21) it can be seen that

M[G1
ji(x

p(0), 0;xp(t), t)] = δij δ(t)
and

M

[
∂G1

ji(x
p(0), 0;xp(t), t)
∂t ′

]
= −δij δ′(t).

Hence

M

[
AjmG

1
mi(x

p(0), 0;xp(t), t)− Bjm ∂G
1
mi(x

p(0), 0;xp(t), t)
∂t ′

]
= Ajiδ(t) +Bjiδ

′(t)

and comparing this equation with (22) it can be seen that

G2
ji = AjmG1

mi(x
p(0), 0;xp(t), t)− Bjm ∂G

1
mi(x

p(0), 0;xp(t), t)
∂t ′

. (23)

Once (21) has been solved forG1
ji , we use (23) to obtainG2

ji , and hence the solutionGji of
(19). The phase space diffusion current is then found by substituting thisGji for that used in
appendix B, to arrive at similar equations to (14)–(17).
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5. Comparison with LES data

Recent LES results have been obtained for particle dispersal in a homogeneous developing
shear flow [22]. In this section results obtained from the pdf kinetic equation will be compared
with the LES data for three particle sizes. The results obtained from the LES were for the
particle Reynolds stresses,v′iv

′
j , wherev′ = v − v̄ is the fluctuating particle velocity and̄v is

the mean particle velocity. These are obtained from the pdf kinetic equation, by deriving, and
then solving, a transport equation for the particle Reynolds stresses, though other techniques
can also be used [23]. This transport equation is obtained by rewriting the pdf kinetic equation
in terms ofv′, then multiplying the resultant equation by1

2mv
′
iv
′
j and then integrating it over

all velocities [7, 24]. For the case considered here, the transport equation is found to be†

d

dt
v′iv
′
j = −2βv′iv

′
j −

∂v̄i

∂xm
(v′j v′m + λmj )− ∂v̄j

∂xm
(v′iv′m + λmi) +µij +µji (24)

where we have setβij = βδij with β−1 being the particle response time.
The LES data involves fluid statistics at various times: these include the fluid Reynolds

stresses,u′u′, the turbulent kinetic energy,k, and turbulent dissipation rate,ε; they are used
to obtain expressions for the quantities〈ff〉 andτ which appear in the dispersion tensorsλ
andµ given in appendix C. By assuming that only Stokes drag is acting on the particle,

〈ff〉 = β2u′u′. (25)

An expression is also required forτ and this is chosen to be

τ = 0.482
k

ε
. (26)

The constant appearing in this equation was derived from a Langevin equation and was the
agreed form by all those who participated in this ‘test case’ comparison [22].

The LES for a simple shear was carried out by first tracking particles through an isotropic
flow field (again generated by LES) until they had reached equilibrium with the flow. Only
then was the shear applied; this gives rise to some initial correlation between the particle and
fluid velocities which is highlighted in the final row of table 1. Further, it should be noted that
a constant and uniform mean shear rate was applied to both the fluid and the particle phase
(α = 50 s−1); this was to avoid the added complication of the crossing trajectory effect. Thus
the mean particle velocity and the mean fluid velocity,ū can be expressed asv̄i = αδi1x2 = ūi ,
and (24) reduces to

d

dt
v′iv
′
j = −2βv′iv

′
j − αδi1(v′j v′2 + λ2j )− αδj1(v

′
iv
′
2 + λ2i ) +µij +µji. (27)

These are three coupled ordinary differential equations and are solved numerically with the
form for λ andµ given in appendix C. However, since bothλ andµ depend onu′u′ and
τ , which are developing and thus changing with time, the differential equations, (27), were
solved in a piecewise manner. This is best explained as follows:

(1) At the timet1, at which the fluid statistics are given, read inu′u′, k andε.
(2) Evaluate〈ff〉 and τ using (25) and (26) respectively. Use these expressions in the

equations forλ andµ.
(3) Integrate the differential equations (27) fromt1 to the next time at which data is given,t2,

keeping〈ff〉 andτ fixed to the values calculated att1.

This procedure is now repeated until the final data point is reached.

† Due to the homogeneity of the problem considered, all spatial gradients other than the mean shearing are zero.
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Table 1. Particle initial conditions for simple shear flow.

Particle diameter (µm) 5 30 60

Mean particle relaxation time (s) 1.95× 10−4 6.5× 10−3 2.4× 10−2

Particle Reynolds stresses,v′iv
′
j (m

2 s
−2
) 0.078δij 0.064δij 0.040δij

Fluid–particle velocity correlation,u′iv
′
j (m

2 s
−2
) 0.078δij 0.064δij 0.040δij

Figure 1. Particle Reynolds stresses for 60µm particle.

The particle Reynolds stresses obtained from the pdf kinetic equation (both with and
without initial correlation effects) are compared with those from the LES results in figures 1–
3. For all cases, taking into account the initial effects gives very good agreement between the
LES data and that obtained from the pdf kinetic equation. However, if these initial effects are
neglected, only the 5µm and 30µm particles give good agreement; for the 60µm particles,
thev′1v

′
1 component of the Reynolds stresses is underpredicted initially, though the agreement

gets better for longer times. This is due to how quickly the particles respond to the fluid motion.
Thus, initial correlation effects appear to be important for transient calculations or for particles
with large response times but not so crucial for long time behaviour or for particles with small
response times.
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Figure 2. Particle Reynolds stresses for 30µm particle.

6. Conclusions

In the context of particle laden flows, a new method has been developed to derive the pdf
kinetic equation for the transport of particles in a turbulent flow. This is based on a functional
formalism; specifically, both the particle position and velocity are considered to be functionals
of the fluctuating component of the aerodynamic driving force. From the particle equations
of motion, Liouville’s equation for the particle phase space density can be derived from first
principles. On averaging over all realizable states of the fluctuating aerodynamic driving
force, this leads to a closure problem for the phase space diffusion current. However, results
from functional calculus can be immediately applied, and for the case of a Gaussian random
aerodynamic driving force, the closure model presented here is identical to that obtained from
the LHDI approximation used elsewhere. It was also shown that the classical Fokker–Planck
equation was a special case of the pdf kinetic equation under the additional assumption that
the random aerodynamic driving force was a white noise process. The functional formalism
was also extended to consider initial correlation effects. As a practical example of the theory
presented here, solutions to the pdf kinetic equation were compared with results obtained from
particle tracking in a developing simple shear generated by LES. It was seen that for a variety
of particle sizes the agreement was excellent, and that initial correlation effects were important
for particles with large response times.
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Figure 3. Particle Reynolds stresses for 5µm particle.

Unlike the LHDI approximation, it would be straightforward to include other physical
mechanisms acting on the particle, such as an exchange of mass and temperature between
the two phases. This would only involve modifying the fine-grained phase space density
function to include these additional particle variables. Further, it should be possible to take
into account the other terms which appear in the more general equations of motion for a particle
(such as the Basset history term, added mass term etc). This work can also be extended to
include particle–particle interactions which would then make the study of aggregation and
fragmentation possible.

Appendix A. Functionals and their derivatives

Throughout this paper, functionals and functional derivatives are used quite substantially. Here,
brief definitions of these are given. For a more detailed and rigorous account see, for example
[25, 26].

Definition A.1. We say that a quantity8 is a functionalof the functionθ(t) in the interval
(a, b), when it depends on all the values taken byθ(t) whent varies in the interval(a, b) and
we will write8[θ(t)] for the functional8.
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Definition A.2. The functional8[θ(t)] is said to bedifferentiablewith respect toθ(t), if when
a small incrementδθ(t) is added toθ(t), the principal part of the incrementδ8[θ(t)] of this
functional is linearly dependent onδθ(t), i.e.

δ8[θ(t)] = 8[θ(t) + δθ(t)] −8[θ(t)]

=
∫ b

a

8′[θ(t)]δθ(t) dt + o

(∫ b

a

|δθ(t)| dt
)

(A1)

and8′[θ(t)] at the pointt = t1 is called thefunctional derivativeof 8[θ(t)] with respect
to θ(t) at the pointt = t1. Also,δ8[θ(t)], is called thedifferential or first variationof the
functional8[θ(t)].

Taking into account that8′[θ(t)] is the coefficient ofδθ(t) dt in the linear part of the
differentialδ8[θ(t)], it is convenient to adopt the notation

δ8[θ(t)]

δθ(t) dt
= 8′[θ(t)] (A2)

for the functional derivative. This notation stresses that the functional derivative is a double
limit

δ8[θ(t)]

δθ(t) dt
= lim
|δθ(t)|→0
1t→0

8[θ(t) + δθ(t)] −8[θ(t)]∫
1t
δθ(t) dt

whereδθ(t) now indicates a function that is non-zero only in a small interval of length1t

surrounding the pointt .
The simplest example of a differentiable functional is

8[θ(t)] =
∫ b

a

A(s)θ(s) ds

from which the differential is

δ8[θ(t)] =
∫ b

a

A(s)δθ(s) ds + o

(∫ b

a

|δθ(t)| dt
)

and so from (A1) and (A2), the functional derivative of this functional is
δ8[θ(t)]

δθ(s) ds
= A(s).

Appendix B. Evaluation of the phase space diffusion current

In this appendix, a closed expression for the phase space diffusion current〈fi(x, t)W(x, v, t)〉
is obtained. In order to illustrate the derivation using the method outlined in section 3, the
cases of homogeneous and inhomogeneous flows are considered separately.

B.1 Homogeneous flow

The first case to be considered will be homogeneous flow with no mean aerodynamic driving
force, nor any external forces. It will also be assumed for the moment thatβ is a real symmetric
tensor with constant elements and so can be diagonalized with elementsβi , say. In this case
the particle equation of motion reduces to

dxpi
dt
= vpi (B1)

dvpi
dt
= −βivpi + fi(x

p, t). (B2)
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Solving these forxp gives

x
p

i (t) = c0
i −

c1
i

βi
e−β

i t +
∫ t

0
e−β

is

∫ s

0
eβ

irfi(x
p, r)dr ds

wherec0 andc1 are constants which are determined from the initial conditions which we assume
here to be given att = 0. Using this equation, the functional derivative can be evaluated, and
is

δx
p

i (t)

δfj (x′, t ′) dx ′ dt ′
=
∫ t

0
e−β

is

∫ s

0
eβ

ir δfi(x
p, r)

δfj (x′, t ′) dx ′ dt ′
dr ds

=
 0 if t < t ′
δij

βi
δ(xp(t ′)− x′)(1− e−β

i(t−t ′)) if t > t ′. (B3)

Similarly, either by solving (B2) forvp, or using (B3) and

δv
p

k (t)

δfj (x′, t ′) dx′ dt ′
= d

dt

δx
p

k (t)

δfj (x′, t ′) dx′ dt ′
(B4)

it is seen that
δv

p

i (t)

δfj (x′, t ′) dx′ dt ′
= δij δ(xp(t ′)− x′)e−βi(t−t ′). (B5)

These results coincide with those given in [27, 28] whenβi = β. However, in the latter paper,
the equation of motion being considered includes an external force which is a function of
position, and as will be seen in the next section, the forms given in that paper for (B3) and
(B5) should have been modified to take this into account.

Having found the functional derivatives of bothxp andvp, we can now evaluate the phase
space diffusion current,〈fi(x, t)W(x, v, t)〉. Recall that from (9) and (10), this involves the
functional derivative ofW(x, v, t) which was expressed in terms of functional derivatives of
xp andvp through (11). Thus, using (B3) and (B5),

〈fi(x, t)W(x, v, t)〉 = −
∫

dx′
∫ t

0
dt ′〈fi(x, t)fj (x′, t ′)〉

×
[
∂

∂xk

〈
1

βk
δjk(1− e−β

k(t−t ′))δ(xp(t ′)− x′)W
〉

+
∂

∂vk
〈δjke−βk(t−t ′)δ(xp(t ′)− x′)W 〉

]
= − ∂

∂xj

∫
dx′

∫ t

a

dt ′
1

βj
(1− e−β

j (t−t ′))〈fi(x, t)fj (x′, t ′)〉〈δ(xp(t ′)− x′)W 〉

− ∂

∂vj

∫
dx′

∫ t

0
dt ′e−β

j (t−t ′)〈fi(x, t)fj (x′, t ′)〉〈δ(xp(t ′)− x′)W 〉

+
∫

dx′
∫ t

0
dt ′

1

βj
(1− e−β

j (t−t ′))
〈
∂fi(x, t)

∂xj
fj (x

′, t ′)
〉
〈δ(xp(t ′)− x′)W 〉.

(B6)

In (B6) a new unknown has been introduced:〈δ(xp(t ′)−x′)W 〉. Since〈W 〉 is the probability
of the particle position and velocity beingx andv at timet , this unknown can be considered
as the joint probability of the particle passing throughx′ at t ′ and(x, v) at timet . This joint
probability can also be written in terms of conditional probabilities

〈δ(xp(t ′)− x′)W 〉 = 〈δ(xp(t ′)− x′)|xp(t) = xvp(t) = v〉〈W 〉 (B7)
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where the first term on the right-hand side can be considered as the probability that the particle
is atx′ at t ′ given that (conditional upon) it is at(x, v) at time t . Alternatively, it may be
considered as the probability of transition from the state(x, v) at timet to the statex′ at t ′.
Substituting (B7) into (B6), it can be seen that the phase space diffusion current has been
expressed in terms of〈W 〉, the Eulerian statistics off (which are assumed known) and the
transition probability. Thus, the closure problem has been transferred into finding an expression
for this latter term.

This problem can be avoided if the transition probability is independent off for then the
spatial integral in (B6) can be performed. Under certain circumstances [29] the probability
distribution of the particle paths andf(x, t) can be assumed to be independent (Corrsin’s
hypothesis). This assumption has been shown to be quite accurate in numerical simulations
of particle motion in turbulent flows [30]. As an alternative approach, ifβτ � 1, whereτ
is the timescale of the fluctuating fluid motion, then〈δ(xp(t ′) − x′)|xp(t) = x; vp(t) = v〉
can be replaced by〈δ(xp(x, v, t |t ′) − x′)〉 wherexp(x, v, t |t ′) represents the solution of
(B1) and (B2) in the absence off and with the ‘initial’ conditionsxp(x, v, t |t) = x and
vp(x, v, t |t) = v. This approximation is exactly that found in [18]. It is also that used in the
LHDI approach, where a transformation is carried out in terms of phase space variables which
solve the particle equations of motion which are devoid off (see [7] for details). Using either
of the above approaches, so that the spatial integrals in (B6) can be evaluated, gives

〈fi(x, t)W(x, v, t)〉 = − ∂

∂xj

∫ t

0
dt ′

1

βj
(1− e−β

j (t−t ′))〈fi(x, t)fj (xp(x, v, t |t ′), t ′)〉〈W 〉

− ∂

∂vj

∫ t

0
dt ′e−β

j (t−t ′)〈fi(x, t)fj (xp(x, v, t |t ′), t ′)〉〈W 〉

+
∫ t

0
dt ′

1

βj
(1− e−β

j (t−t ′))
〈
∂fi(x, t)

∂xj
fj (x

p(x, v, t |t ′), t ′)
〉
〈W 〉.

Writing f(x, v, t |t ′) for f(xp(x, v, t |t ′), t ′), the phase space diffusion current,〈fW 〉, can be
written as

〈fi(x, t)W(x, v, t)〉 = −
[
∂

∂xj
λji +

∂

∂vj
µji + γi

]
P(x, v, t)

where

λji =
∫ t

0
dt ′

1

βj
(1− e−β

j (t−t ′))〈fj (x, v, t |t ′)fi(x, t)〉 (B8)

µji =
∫ t

0
dt ′e−β

j (t−t ′)〈fj (x, v, t |t ′)fi(x, t)〉 (B9)

γi = −
∫ t

0
dt ′

1

βj
(1− e−β

j (t−t ′))
〈
fj (x, v, t |t ′)∂fi(x, t)

∂xj

〉
. (B10)

On comparing these expressions with the equivalent expressions derived from the LHDI
approximation given in [7], it is seen that the two forms for〈fW 〉 are identical. Thus the
final form of the pdf kinetic equation for homogeneous flow is

∂P

∂t
+ vi

∂P

∂xi
− ∂

∂vi
(βiviP ) = ∂

∂vi

[
∂

∂vj
(µjiP ) +

∂

∂xj
(λjiP ) + γiP

]
(B11)

with the tensorsλ, µ andγ given by (B8)–(B10).
It should be stressed that if we had been instead considering homogeneous flows with a

Gaussian random processf(t) andf(x, t) the above difficulty would not have arisen. In this
case there would have been no delta function in (B3) and (B5), and no spatial integral in (B6).
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The resulting pdf kinetic equation would thus have been the same as (B11) but without theγ

term and with

λji =
∫ t

0
dt ′

1

βj
(1− e−β

j (t−t ′))〈fj (t ′)fi(t)〉

µji =
∫ t

0
dt ′e−β

j (t−t ′)〈fj (t ′)fi(t)〉.

This agrees with the results given in [6].
Finally, to show that the above formulation contains the classical Fokker–Planck equation

of Brownian motion, we assumef to be a white noise process,

〈fi(x, t)fj (x′, t ′)〉 = Fij (x,x′)δ(t − t ′)
whereF(x,x′) is some known function. The time integrals in (B6) can be performed first,
and this leads to

〈fi(x, t)W(x, v, t)〉 = −1

2

∂

∂vj

∫
dx′Fij (x,x′)〈δ(xp(t)− x′)|xp(t) = x; vp(t) = v〉〈W 〉

where the factor of12 arises since the singularity in the (time) delta function is one of the
limits in the time integration. From the conditions imposed on the transition probability, this
becomes

〈fi(x, t)W(x, v, t)〉 = −1

2

∂

∂vj
Fij (x,x)〈W 〉.

Thus, as was stated in the introduction, the classical Fokker–Planck equation of Brownian
motion is a special case of the more general form considered here.

B.2 Inhomogeneous flow

The method will now be extended to consider non-uniform flows, that is where the equation
of motion is of the form

dxpi
dt
= vpi (B12)

dvpi
dt
= −βij (xp, t)vpj + Fi(x

p, t) + fi(x
p, t). (B13)

Using these equations, an expression for〈f(x, t)W(x, v, t)〉 can now be derived. Recall that
this requires the evaluation of the functional derivatives of bothxp andvp with respect tof .
Two ways in which these can be derived will now be discussed. From (B4) we need only
find an expression for the functional derivative ofxp with respect tof , since the functional
derivative ofvp with respect tof , is the derivative with respect tot of the expression for the
functional derivative ofxp. To this end, we rewrite (B12) and (B13) in the form

d2x
p

i

dt2
= −βij (xp, t)

dxpj
dt

+ Fi(x
p, t) + fi(x

p, t). (B14)

The infinitesimal response function.The first method presented here is an extension of the idea
of the ‘infinitesimal response function’ as discussed in Leslie [31]. The evolution ofxp(t) is
described by (B12) and (B13); that is, a particular realization of the (turbulent) particle motion
under the influence off(xp, t), a particular realization of the fluctuating driving force. Now
suppose there is a rather similar system in which the particle position isxp(t) +1xp(t) and
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the driving force isf(xp, t) +1f(xp, t). The equation of motion for the second system is,
from (B14),

d2

dt2
(x
p

i +1xpi ) = −βij (xp +1xp, t)
d

dt
(x
p

j +1xpj ) + Fi(x
p +1xp, t) + fi(x

p, t)

+1fi(x
p, t). (B15)

Subtracting (B14) from (B15) and expanding the functions ofxp +1xp as a Taylors series
aboutxp, gives

d21x
p

i

dt2
= −βij

d1xpj
dt
− ∂βij
∂x

p

k

1x
p

k

dxpj
dt

+
∂Fi

∂x
p

j

1x
p

j +1fi(x
p, t) + O((1xp)2). (B16)

We now suppose that the ‘disturbing force’,1f , which is responsible for the difference between
the two systems, is small enough so that the terms O((1xp)2) can be ignored. Also, in this
case, identifying1xp and1f as the variations inxp andf respectively, that is asδxp and
δf , (B16) becomes

d2δx
p

i

dt2
= −βij

dδxpj
dt
− ∂βij
∂x

p

k

δx
p

k

dxpj
dt

+
∂Fi

∂x
p

j

δx
p

j + δfi(x
p, t). (B17)

This approximation is only exact ifδf is infinitesimally small. Thus, the solution to (B17)
is the response to an infinitesimal disturbance. As can be seen, (B17) is a linear ordinary
differential equation forδxp, and as such has the general solution

δx
p

i (t) =
∫ t

0
δfj (x

p(t ′), t ′)Gji(x
p(t ′), t ′;xp(t), t)dt ′ (B18)

whereGji(x
p(t ′), t ′;xp(t), t) satisfies

d2

dt2
Gji + βin

d

dt
Gjn +Gjk

∂βin

∂x
p

k

dxpn
dt
−Gjk

∂Fi

∂x
p

k

= δjiδ(t − t ′).

If it is assumed that the solutionxp is determined by the initial conditions att = 0, then the
functionsGji vanish unlesst > t ′; that is they can be considered as retarded Green’s functions.
TheGji are similar to the generalized response functions appearing in [12]; this will be further
highlighted in the following section.

From (B18), we can now find the functional derivative ofxp with respect tof . First we
write (B18) in the form

δx
p

i (t) =
∫ t

0
dt ′
∫

dx′δfj (x′, t ′)Gji(x
′, t ′;xp(t), t)δ(xp(t ′)− x′).

Then

δx
p

i (t)

δfj (x′, t ′) dx′ dt ′
= Gji(x

′, t ′;xp(t), t)δ(xp(t ′)− x′) (B19)

and using (B4), we also have

δv
p

i (t)

δfj (x′, t ′) dx′ dt ′
= d

dt
Gji(x

′, t ′;xp(t), t)δ(xp(t ′)− x′). (B20)

Substituting (B19) and (B20) into (11), and the resultant expression into (9), the phase space
diffusion current can thus be written as

〈fi(x, t)W(x, v, t)〉 = −
∫

dx′
∫ t

0
dt ′〈fi(x, t)fj (x′, t ′)〉
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×
[
∂

∂xk
〈Gjk(x

′, t ′;xp(t), t)δ(xp(t ′)− x′)W 〉

+
∂

∂vk

〈
d

dt
Gjk(x

′, t ′;xp(t), t)δ(xp(t ′)− x′)W
〉]

= − ∂

∂xk

∫
dx′

∫ t

0
dt ′〈fi(x, t)fj (x′, t ′)〉〈Gjk(x

′, t ′;xp(t), t)δ(xp(t ′)− x′)W 〉

− ∂

∂vk

∫
dx′

∫ t

0
dt ′〈fi(x, t)fj (x′, t ′)〉〈Ġjk(x

′, t ′;xp(t), t)δ(xp(t ′)− x′)W 〉

+
∫

dx′
∫ t

0
dt ′
〈
∂fi(x, t)

∂xk
fj (x

′, t ′)
〉
〈Gjk(x

′, t ′;xp(t), t)δ(xp(t ′)− x′)W 〉
(B21)

whereĠji = dGji/dt .
As in the homogeneous case, by considering the above as joint probabilities, the terms in

the angled brackets can be rewritten as follows:

〈Gjk(x
′, t ′;xp(t), t)δ(xp(t ′)− x′)W 〉 = 〈Gjk(x

′, t ′;x, t)〉〈δ(xp(t ′)− x′)W 〉
= Gjk(x

′, t ′;x, t)〈δ(xp(t ′)− x′)|xp(t) = x; vp(t) = v〉〈W 〉
and similarly for the terms involvingĠji . The first line is obtained by expressing joint
probabilities in terms of conditional ones; the second line follows because of the conditions
onG; and the third line is obtained by using the transition probability and by noting thatG

is not a fluctuating quantity since (1) by the method of construction of the particle equations
of motion as given in [7], bothβ andF are dependent only on the mean values of the particle
and fluid velocity and thus not explicitly onf and (2)G, from the second line in the above
equation, does not depend onxp but only onx′ andx.

Finally, by making the same approximations for the transition probability as was done
in the homogeneous case, and again writingf(x, v, t |t ′) for f(xp(x, v, t |t ′), t ′), where
xp(x, v, t |t ′) is the solution to the equations of motion in the absence off , we have

〈fi(x, t)W(x, v, t)〉 = − ∂

∂xk

∫ t

0
dt ′〈fi(x, t)fj (x, v, t |t ′)〉Gjk(x

′, t ′;x, t)〈W 〉

− ∂

∂vk

∫ t

0
dt ′〈fi(x, t)fj (x, v, t |t ′)〉Ġjk(x

′, t ′;x, t)〈W 〉

+
∫ t

0
dt ′
〈
∂fi(x, t)

∂xk
fj (x, v, t |t ′)

〉
Gjk(x

′, t ′;x, t)〈W 〉. (B22)

Writing Gjk(t
′|t) for Gjk(x

′, t ′;x, t), (B22) can be rewritten as

〈fi(x, t)W(x, v, t)〉 = −
[
∂

∂xj
λji +

∂

∂vj
µji + γi

]
P(x, v, t) (B23)

where

λji =
∫ t

0
dt ′〈fi(x, t)fk(x, v, t |t ′)〉Gkj (t

′|t) (B24)

µji =
∫ t

0
dt ′〈fi(x, t)fk(x, v, t |t ′)〉 d

dt
Gkj (t

′|t) (B25)

γi = −
∫ t

0
dt ′
〈
∂fi(x, t)

∂xj
fk(x, v, t |t ′)

〉
Gkj (t

′|t) (B26)
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and whereGji(t
′|t) satisfies

d2

dt2
Gji + βin

d

dt
Gjn +Gjk

∂βin

∂xk

dxn
dt
−Gjk

∂Fi

∂xk
= δjiδ(t − t ′). (B27)

Comparing these expressions with the equivalent ones derived from the LHDI
approximation for inhomogeneous flow given in [7], it is seen that the two forms for〈fW 〉 are
again identical. Thus the final form of the pdf kinetic equation for inhomogeneous flow is

∂P

∂t
+ vi

∂P

∂xi
− ∂

∂vi
(βij vjP ) +

∂

∂vi
(FiP ) = ∂

∂vi

[
∂

∂vj
(µjiP ) +

∂

∂xj
(λjiP ) + γiP

]
but with the tensors,λ, µ andγ given by (B24)–(B26) above.

Green’s function representation.Another approach in deriving the functional derivatives of
xp andvp with respect tof , is to define, following [12],

Gji(x
p(t ′), t ′;xp(t), t) = δx

p

i (t)

δfj (xp(t ′), t ′) dt ′
. (B28)

Taking the functional derivative of (B14) with respect tof , yields

δ

δfj (xp(t ′), t ′) dt ′
d2x

p

i

dt2
= − δ

δfj (xp(t ′), t ′) dt ′

(
βik(x

p(t), t)
dxpk
dt

)
+
δFi(x

p(t), t)

δfj (xp(t ′), t ′) dt
+

δfi(x
p(t), t)

δfj (xp(t ′), t ′) dt ′
. (B29)

Noting that the functional derivative with respect tof(xp(t ′), t ′) commutes with the time
derivatives appearing in (B29), this becomes

d2

dt2
δx

p

i

δfj (xp(t ′), t ′) dt ′
= −βik d

dt

δx
p

k

δfj (xp(t ′), t ′) dt ′
− dxpk

dt

δβik

δfj (xp(t ′), t ′) dt ′

+
δFi(x

p(t), t)

δfj (xp(t ′), t ′) dt ′
+ δij δ(t − t ′). (B30)

On using the chain rule to take the functional derivative ofβ andF , and also using the definition
given in (B28), (B30) becomes

d2

dt2
Gji = −βik d

dt
Gjk − dxpk

dt

∂βik

∂x
p
m

Gjm +
∂Fi

∂x
p

k

Gjk + δij δ(t − t ′).

Note, however, that we wish to evaluateδxpi (t)/δfj (x
′(t ′), t ′) dt ′ dx′. From (B28) it can be

seen that

δx
p

i (t) =
∫ t

0
dt ′
∫

dx′δfj (x′, t ′)Gji(x
′, t ′;xp(t), t))δ(xp(t ′)− x′)

from which follows

δx
p

i (t)

δfj (x′, t ′) dt ′ dx′
= Gji(x

′, t ′;xp(t), t)δ(xp(t ′)− x′).

This equation is exactly the same as was derived before using the infinitesimal response function
method (cf (B19)). Thus that argument is now repeated with exactly the same final equation
derived for the phase space diffusion current as given by (B23)–(B27).
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Appendix C. The dispersion tensors

In order to derive solutions to the pdf kinetic equation, explicit forms of the dispersion tensors
µ andλ are required. In general, these will be functions of position,x and velocityv as well
as timet . Nonetheless, under certain assumptions, explicit expressions forµ andλ may be
obtained as functions of time only.

In section 5 we are interested in the case where the underlying flow field is a simple shear,
and this is what will be concentrated on here. However, it is not difficult to extend the details
given below to other (linear) flow fields. Also, we include the initial correlation effects as
outlined in section 4; see the discussion before (27). That is we set

x
p

i (0) = 0 ẋ
p

i =
a

β
fi(x

p(0), 0) (C1)

with a a known constant and, as in section 5, we have assumed thatβij = βδij , whereβ−1 is
the particle response time. From the analysis given in section 4, it is seen from (20)

Bji = 0 Aji = a

β
δij δ(t

′).

Thus (23) gives

G2
ji =

a

β
δ(t ′)G1

ji(x
p(0), 0;xp(t), t)

whereG1
ji satisfies (21). Thus,

Gji(x
p(t ′), t ′;xp(t), t) = G1

ji(x
p(t ′), t ′;xp(t), t) +

a

β
δ(t ′)G1

ji(x
p(0), 0;xp(t), t).

Substituting this into (B19) and (B20) gives

δx
p

i (t)

δfj (x′, t ′) dx′ dt ′
= G1

ji(x
′, t ′;xp(t), t)δ(xp(t ′)− x′)

+
a

β
δ(t ′)G1

ji(x
′, 0;xp(t), t)δ(xp(0)− x′)

δv
p

i (t)

δfj (x′, t ′) dx′ dt ′
= d

dt
G1
ji(x

′, t ′;xp(t), t)δ(xp(t ′)− x′)

+
a

β
δ(t ′)

d

dt
G1
ji(x

′, 0;xp(t), t)δ(xp(0)− x′).
Using the above and (B21), along with the same arguments that lead to (B22), we find that the
phase space diffusion current is

〈fi(x, t)W(x, v, t)〉 = − ∂

∂xk

∫ t

0
dt ′〈fi(x, t)fj (x, v, t |t ′)〉G1

jk(x
′, t ′;x, t)〈W 〉

− a
β

∂

∂xk
〈fi(x, t)fj (x, t)fj (x, v, t |0)〉G1

jk(x
′, 0;x, t)〈W 〉

− ∂

∂vk

∫ t

0
dt ′〈fi(x, t)fj (x, v, t |t ′)〉Ġ1

jk(x
′, t ′;x, t)〈W 〉

− a
β

∂

∂vk
〈fi(x, t)fj (x, v, t |0)〉Ġ1

jk(x
′, 0;x, t)〈W 〉

+
∫ t

0
dt ′
〈
∂fi(x, t)

∂xk
fj (x, v, t |t ′)

〉
G1
jk(x

′, t ′;x, t)〈W 〉

+
a

β

〈
∂fi(x, t)

∂xk
fj (x, v, t |0)

〉
G1
jk(x

′, 0;x, t)〈W 〉. (C2)
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As before, writingG1
jk(t
′|t) for G1

jk(x
′, t ′;x, t), (C2) can be rewritten as

〈fi(x, t)W(x, v, t)〉 = −
[
∂

∂xj
λji +

∂

∂vj
µji + γi

]
P(x, v, t)

where now

λji =
∫ t

0
dt ′〈fi(x, t)fk(x, v, t |t ′)〉G1

kj (t
′|t) +

a

β
〈fi(x, t)fk(x, v, t |0)〉G1

kj (0|t)〈W 〉 (C3)

µji =
∫ t

0
dt ′〈fi(x, t)fk(x, v, t |t ′)〉 d

dt
G1
kj (t
′|t) +

a

β
〈fi(x, t)fk(x, v, t |0)〉 d

dt
G1
kj (0|t)〈W 〉

(C4)

γi = −
∫ t

0
dt ′
〈
∂fi(x, t)

∂xj
fk(x, v, t |t ′)

〉
G1
kj (t
′|t)− a

β

〈
∂fi(x, t)

∂xk
fk(x, v, t |0)

〉
G1
kj (0|t)〈W 〉

(C5)

and whereG1
ji(t
′|t) satisfies

d2

dt2
G1
ji + β

d

dt
G1
ji −G1

jk

∂Fi

∂xk
= δjiδ(t − t ′). (C6)

To proceed, the correlation〈f(x, t)f(x, v, t |t ′)〉 must be evaluated somehow. Since the
flow field in section 5 is homogeneous we neglect the variations with respect tox andv. We
further assume that the resultant correlation〈fi(t)fk(t |s)〉 is stationary and has an exponential
decay, i.e.

〈fi(t)fk(t |s)〉 = 〈fifk)e−(s−t)/τ
whereτ is a constant and represents the fluid integral timescale. Since the flow field is linear,
we see from (C6) that we can replaceG1

ij (t
′|t) by G1

ij (t − t ′) in (C3)–(C5). Also, due to
homogeneity,γ = 0.

Under these assumptionsµ andλ are given by

λji(t) = 〈fifk〉
∫ t

0
Gkj (s)e

−s/τ ds +
a

β
〈fifk〉e−t/τGkj (t) (C7)

µji(t) = 〈fifk〉
∫ t

0

dGkj (s)

ds
e−s/τ ds +

a

β
〈fifk〉e−t/τ dGkj (t)

dt
(C8)

withG(t) obtained by solving

d2

dt2
Gji + β

d

dt
Gji −Gjk

∂Fi

∂xk
= δjiδ(t). (C9)

In the simple shear flow, the mean aerodynamic driving force acting on the particle is
given by

〈F 〉 = βū = αβ(x2, 0) (C10)

where it has been assumed that the only force acting on the particle is Stokes drag; this also
impliesf = βu′ whereu′ is the fluctuating fluid velocity. In (C10),α is the shear gradient
andx = (x1, x2) represents position. In the absence of any external force, (C9) gives

d2G

dt2
= −β dG

dt
+ αβH + δ(t)I

where

H =
(
G12 0
G22 0

)
.
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This has the solution

G(t) =
( 1

β
(1− e−βt ) 0

α
β2 [2(e−βt − 1) + βt(1 + e−βt )] 1

β
(1− e−βt )

)
.

These are now substituted in (C7) and (C8) to obtainλ(t) andµ(t):

λij (t) = 〈fifj 〉 τ

β(βτ + 1)
[(βτ + 1)(1− e−t/τ ) + e−(βτ+1)t/τ − 1)]

+δi1〈f2fj 〉 2ατ

β2(βτ + 1)
[(1− e−(βτ+1)t/τ ) + (βτ + 1)(e−t/τ − 1)]

+δi1〈f2fj 〉 ατ 2

β(βτ + 1)2
[(1− e−(βτ+1)t/τ )− (βτ + 1)2(e−t/τ − 1)]

−δi1〈f2fj 〉 ατ t

β(βτ + 1)
[(βτ + 1)e−t/τ + e−(βτ+1)t/τ ]

+〈fifj 〉 a
β2

e−t/τ (1− e−βt ) + δi1〈f2fj 〉aα
β3

e−t/τ [2(e−βt − 1) + βt(1 + e−βt ]

µij (t) = 〈fifj 〉 τ

βτ + 1
(1− e−(βτ+1)t/τ )

+δi1〈f2fj 〉 ατ

(βτ + 1)2
e−(βτ+1)t/τ [t (βτ + 1) + τ(1− e(βτ+1)t/τ )]

+δi1〈f2fj 〉 ατ

β(βτ + 1)
[(βτ + 1)(1− e−t/τ ) + (e−(βτ+1)t/τ − 1)]

+〈fifj 〉 a
β

e−(βτ+1)t/τ + δi1〈f2fj 〉aα
β2

e−t/τ [1− e−βt (1 +βt)].

From the initial conditions, (C1), withf = βu′, we havevi = au′i . Multiplying both
sides byu′j and averaging givesu′j v

′
i = au′ju′i . This equation enables us to determinea since

bothu′ju
′
i andu′j v

′
i are known att = 0 from the LES data with the latter given in table 1.
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